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§1. Introduction.
This final report covers the time period from December 1, 1989 to November 30, 1995 of

ONR Grant N00014-90-J-1206. It is organized as follows. In this section I will give
statistical information covering this period. The next“ﬁ\?e sections progress in the major
areas of my research is summarized and the main accomplishments are highlighted. The
last section provides references to my papers and other papers discussed in the summary.
It is assumed that the reader is familiar with my original proposals [64] and [65].

The papers [27] - [43], [45] - [49], [51], [53], [56], and [57] were published
during this period. The papers [44], [50], [ 52], [55], and [58] were accepted for
publication. The papers [54] and [60] were submitted for publication. The papers [29],
[39], [41] - [44], [53], and [60] are about on-line coloring. The papers [37], [45], and
[54] concemn the closely related subject of game chromatic number. The papers [33], [35] -
[36], [38], [46], [50], and [57] deal with Gy4rfis' graph coloring conjecture on which
many of the on-line coloring results rest. The papers [28], [30], [34], (471, [49], [52], and
[58] concern the dimension of ordered sets, while [27], [31], [32], and [40] deal with other
concepts related to ordered sets. Finally [48], [51], [55], and [56] concern a conjecture of
Pésa about square cycles in dense graphs.

The following students, who all received some support from the grant, have all

earned doctorate degrees from Arizona State University: Stephen Penrice, Jun Qin, Katalin

Kolossa, Juan Quintana, and Yingxing Zhu.

§2. Gyarfas' Conjecture.

Much of my work on on-line coloring is founded on the study of off-line coloring, and in
particular, progress on the following conjecture of Gyarfas. For two graphs G and H,
let Forb(G, H) denote the class of graphs that induce neither G nor H. Let %(G) denote
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denote the chromatic number of G and ®(G) denote the clique number of G. Gydrfés

made the following conjecture.

Conjecture 2.1. (Gyérfds [68]) For any tree T and clique K, there exists a bound b
such that for every graph G € Forb(T, K), x(G) <b.

Gyidrfés [69] gave easy arguments to show that the conjecture is true if T isapathora
star. Gydrfis, Szemerédi, and Tuza [70] showed that the conjecture is true if T is a radius
two tree and K is a triangle. My student Steve Penrice and I made the following major

breakthrough.

Theorem 2.2. (Kierstead and Penrice[35]) For every radius two tree T and every

clique K, there exists a bound b such that for every graph G € Forb(T, K), x(G) <b.

This result depended on the notion of template first used in [33]. Over a series of papers
[36], [38], [46], [50], and [57] with various coauthors from the list Penrice, R&dl,
Trotter, and Zhu, I sharpened this technique to deal with trees of larger radius. With my
student Yingxian Zhu I proved the following generalization of Theorem 2.3, which is
exciting because the same type of preliminary result [33] in the radius two case led to the

proof of Theorem 2.2.

Theorem 2.3. (Kierstead and Zhu [57]) Let T be the radius three tree such that every

vertex adjacent to the root has degree two. Then Conjecture 2.1 holds for T.

An important related question has been raised by Sauer. A class of graphs I" is said to be
vertex Ramsey if forevery Ge I' thereexists He I' such that if the vertices of H are

partitioned into two sets inducing subgraphs H; and H,, then either H; or H, contains

an induced copy of G.



Conjecture 2.4. (Sauer [71]) The class Forb(T, K) is not Ramsey for all trees T and

cliques K.

It is easy to show that Conjecture 2.1 implies Conjecture 2.5. What makes Conjecture 2.5
especially interesting from my perspective, is that the same template techniques that have
been useful for dealing with special cases of Conjecture 2.1 are also useful for more
general cases of Conjecture 2.5. Moreover, these more general cases of Conjecture 2.5
have led to the development of more sophisticated versions of the template technique. 1
believe that it is likely that we will be able to use these more sophisticated versions to make
further progress on Conjecture 2.1. Here are some examples. A spider with toes is a tree
such that the nonleaf vertices form the subdivision of a star. Let T(k,r) be the tree such
that the distance between the root and any leaf is r and every nonleaf has k sons. The
following two theorems give the only examples of trees for which Conjecture 2.5 is known
to hold, but Conjecture 2.1 is not known to hold. In some sense, a spider with toes isa
thin tree, while T(k,r) is a full fat tree when k is large. (Of course, T(1,r) is a spider

with toes.)

Theorem 2.6. (Kierstead [50]) For every spider with toes T and clique K, Forb(T,

K) is not vertex Ramsey.

Theorem 2.7 (Kierstead and Zhu [57]) For every positive integer r and sufficiently

large integer k and every clique K, Forb(T(k,r), K) is not vertex Ramsey.

I believe that we are now closing in on the techniques necessary to solve the following

problem in particular and possibly all of Conjecture 2.1.

Problem 2.8. Prove Conjecture 2.1 for the case of radius three trees.



§3. On-line Coloring

On-line coloring has been the major focus of this project and I have proved four especially
important results. The first of these concerns the application of an on-line coloring
algorithm to the off-line problem Dynamic Storage Allocation (DSA). DSA is an NP-
Complete off-line problem. In the late sixties an oﬁ“—}i_ne approximation algorithm, based
on First-Fit colbring of iriterval graphs, was suggcstc&' for DSA. The performance mﬁo of
this algorithm was twice the competitive ratio of First-Fit. However the best upper bound
on the competitive ratio of First-Fit was O(w). During the seventies this was improved to
O(log ), but the question of whether it was constant remained open until 1986 when I
[25] provided a upper bound of 40 for First-Fit coloring of interval graphs, and thus 80
for the performance ratio for DSA. I have now significantly improved this result. I
observed that with some care First-Fit could be replaced by a better on-line algorithm for

coloring interval graphs. This allowed me to prove the following theorem.

Theorem 3.1. (Kierstead [29]) There exists a polynomial time approximation algorithm

for DSA that has a performance ration of 6.

The intuition behind this algorithm is the following. DSA resembles both Bin Packing and
Interval Graph Coloring. There exist orderings for both problems, under which First-Fit
performs well, but they are not the same. Thus we order the data so that First-Fit performs
well for Bin Packing and use an on-line algorithm for interval graph coloring that is

guaranteed to perform reasonably well under any input sequence.

My other on-line coloring results concern on-line coloring per se. The next result is based
on Theorem 2.2, but is much harder. It identifies classes of graphs with the property that

their on-line chromatic number can be bounded in terms of their clique number.



Theorem 3.2. (Kierstead, Penrice, and Trotter [42]) For every radius two tree T and

every clique K, there exists an on-line algorithm A and a bound b such that for every

graph G € Forb(T, K), x,(G) <b.

In particular, this answers an old question of Schmerl, Problem 7 of my 1989 ONR
proposal [64], who asked whether the on-line chromatic number of co-comparability
graphs could be bounded in terms of their clique size. The answer is yes since co-
comparability graphs do not induce the radius two tree obtained from a star with three

leaves by subdividing each edge.

For any integer k 2 2 the on-line chromatic number of the class of graphs with chromatic
number k is unbounded as the number of vertices n increases. Thus in general we must

must express bounds in terms of n. Lovdsz, Saks, and Trotter went to considerable effort

log** ™ n

_—_—log‘z""“’ n)’ which is barely sublinear. Very recently, I

to prove the upper bound of O(

have done much better. 1 proved the following Theorem, which answers Problem 1 of my

1992 ONR proposal [65].

Theorem 3.3. (Kierstead [60]) There exists an on-line algorithm A that will properly

color any k-colorable on-line graph on n vertices with nl-1&! colors.

My student Katie Kolossa and I had previously obtained much better upper bounds for
perfect graphs. Moreover our lower bounds for perfect graphs match the best lower
bounds for graphs in general. This answers Problem 2 of my 1992 ONR proposal [65].

Theorem 3.4. (Kierstead and Kolossa [53]) There exists an qn—line algorithm A that
will properly color any k-colorable on-line perfect graph on n vertices with n10K/loglogn
colors. Moreover for every fixed positive integer k and every on-line algorithm A, there

k-1
exists an on-line k-colorable perfect graph G such that A uses at least %(__lozgf( n)

colorson G.



§4. Game Chromatic Number
In [37] Faigle, Kern, Trotter and I developed the notion of game chromatic number of a
graph. A game is played between two players A and B ona graph G. The players play
by taking turns coloring the vertices of a graph with colors from a fixed set of n colors so
that no two adjacent vertices receive the same color. If at some point in this process one of
the players cannot play legally, then B wins; otherwise, when the graph is completely
colored A wins. The game chromatic number xg(G) of G istheleast n suchthat A
has a winning strategy when the game is played on the graph G with n colors. Our main
result was that the game chromatic number of a tree is at most four. We also introduced the
problem of whether there exists a constant upper bound on the game chromatic number of
planar graphs.

This question was answered by Trotter and me. We introduced the notion of a k-
admissible ordering of a graph and proved the following two theorems, which together
show that every planar graph has game chromatic number at most 33. We denote the least

k such that a graph G has a k-admissible ordering by a(G).

Theorem 4.1. (Kierstead and Trotter [45]) For every graph G, xg(G) <x(G)aG) +1

Theorem 4.2. (Kierstead and Trotter [45]) For every planar graph G, a(G) <8.

Moreover there exist planar graphs with a(G) = 8.

Tuza and I generalized the bound on game chromatic number of trees by phrasing it in

terms of the treewidth 7(G) of an arbitrary graph G. This answers Problem 10 of my

1992 ONR proposal [65].

Theorem 4.3. (Kierstead and Tuza [54]) For every graph G, 1(G) < 61(G)-2.



§5. Dimension of Ordered Sets

An important problem in the theory of ordered sets is to bound the dimension of various
ordered sets. I have been able too answer several questions that had been open for many
years. One such problem concerns the relation between the dimension of an ordered set

and the maximum degree A of its comparability graph. In a beautiful paper Fiidedi and

. Kahn proved the following inequality, where g(A) is the maximum dimension of an

ordered set whose comparability graph has maximum degree A.
Theorem 5.1. (Fiiredi and Kahn [67]) For all A, g(A) = O(AlogZA).

The only problem with this result was that nobody new of any ordered sets with dimension
greater than A+1. Erdés, Trotter, and I used random bipartite ordered sets to provide such
an example and answer Problem 12 of my 1989 ONR proposal. Let (n,p) be the
probability space consisting of bipartite ordered sets with n maximal elements and n
minimal elements where the event that a given maximal element is greater than a given

minimal element is independently distributed with probability p.

Theorem 5.2. (Erdos, Kierstead, and Trotter [34]) For every € >0 there exists >0

such that if

n—1+£ S pS

logn’

then for almost all P e Q(n,p), dim(P) > SA(P) log IP! > SA(P) log A(P).

We also proved:

Theorem 5.3. (Erdos, Kierstead, and Trotter [34]) There exist constants ¢; and ¢,

such that for almost all labeled ordered sets P, —-{1——9— |<dim(P) <% 1+ -2 |
4 logn 4 logn

Furedi and Kahn obtained the bound of Theorem 5.1 in terms of the dimension of a certain

subset of the boolean lattice. Let B, denote the Boolean lattice obtained by ordering the



power set of {1,2,...,n} by inclusion. Let B (j, k) be the restriction of B, to subsets

of size j and k and dim(j, k; n) = dim(B_(j,k)). Furedi and Kahn actually proved the

following two lemmas.

Lemma 5.4. (Fiiredi and Kahn [67]) For all ordered sets P with A(P) = A,
dim(P) = 0(~—A—— dim(1,10gA;AlogA)).
logA

Lemma 5.5. (Fiiredi and Kahn [67]) For all positive integers k <n, dim(l, k; n) <

(k+1)210g n. In particular, dim(1, log n; n) = O(log3 n).

The log A gap between the example of Theorem 5.2 and Theorem 5.1 made the question
of determining dim(1, logn; n) important. I proved:

log*n

Theorem 5.6. (Kierstead [52])
64loglo

< dim(l,logn;n).
n

In [49] Brightwell, Kostochka, Trotter, and I studied the function dim(, j; n) for 1<i<

J-

§6. Square Cycles in Dense Graphs

An important problem in graph theory is to show that all dense graphs contain certain
spanning subgraphs. For example Dirac's famous theorem says that every graph on n
vertices with minimum degree at least n/2 has a hamiltonian cycle. In 1963 P6sa made the

following conjecture.

Conjecture 6.1. (P6sa [66]) Every graph on n vertices with minimum degree at least

%n contains the square of a hamiltonian cycle, i.e., a hamiltonian cycle together with

every 2-chord.



In a series of papers with Genghua Fan, I have come very close to proving this conjecture.
First we showed that it was asymptotically correct in [48]. Then we proved the following

theorem.

Theorem 6.2. (Fan and Kierstead [51]) Every graph on n vertices with minimum

degree at least (2n—1)/3 contains the square of a hamiltonian path.

This already implies the important result of Aigner and Brandt that every graph on n
vertices with minimal degree at least (2n—1)/3 contains every graph on n vertices with

maximum degree 2. We also proved:

Theorem 6.3. (Fan and Kierstead [56]) Let G be a graph on n vertices with minimum

degree %n. If G does not contain a square hamiltonian cycle then:

1 G does not contain a square cycle of length greater than %—n; and

(2) The vertices of G can be partitioned into two square cycles.

With my student Juan Quintana [55], I showed that the conjecture is true if G hasa

maximal 4-clique.

§7. References.

Publications of Henry A. Kierstead

1. "Countable models of wi-categorical theories in admissible languages”, Annals of
Math. Logic 19 (1980), 127-175.

2. "An effective version of Dilworth's theorem"”, Trans. Amer. Math. Soc. 268
(1981), 63-717.

3. "Recursive colorings of highly recursive graphs”, Canadian Journal of
Mathematics 33 (1981), 1279-1290.

4. "An extremal problem in recursive combinatorics”, Congressus Numerantium
33 (1981), 143-153 (with W. T. Trotter, Jr.). '

5. "Indescernibles and decidable models"”, Journal of Symbolic Loglc 48
(1983), 21-32 (with J. B. Rcmmcl)



10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
22.

"An effective version of Hall's theorem", Proc. Amer. Math. Soc. 88 (1983)
124-128.

"Some applications of Vizing's theorem to vertex colorings of graphs" Discrete
Math 45 (1983), 277-285 (with J. Schmerl).

"On the chromatic index of multigraphs without large triangles”, J. of
Combinatorial Theory Series B 36 (1984), 156-160.

"A theory of recursive dimension for ordered sets", Order 1 (1984), 67-82 (with
G. F. McNulty and W. T. Trotter, Jr.).

"On coloring graphs with locally small chromatic number”, Combinatorica 4
(1984) 183-185 (with E. Szemerédi and W. T. Trotter, Jr.).

"A new method of proving theorems on chromatic index", Discrete Math 52
(1984) 159-164 (with V. Faber and A. Ehrenfeucht).

"Degrees of indescernibles in decidable models”, Trans. Amer. Math. Soc.
289 (1985), 41-57 (with J. B. Remmel).

"Inequalities for greedy dimension of ordered sets”, Order 2 (1985), 145-164
(with W. T. Trotter, Jr.).

"The chromatic number of graphs which induce neither K, 3 nor Ks - €" , Disc.
Math. 58 (1986), 253-262 (with J. Schmerl).

"Recursive ordered sets", Contemporary Mathematics 57 (1986), 75-102.

"NP-Completeness results concerning greedy and supergreedy linear extensions,
Order 3 (1986), 123-134.

"A Ramsey theoretic problem for ordered sets”, Disc. Math. 63 (1987) 217-223
(with W. T. Trotter, Jr.).

"On 7t(1) -automorphisms of recursive linear orders", J. Symbolic Logic 48
(1987), 681-688.

"Super greedy linear extensions of ordered sets", Combinatorial Mathematics:
Proceedings of the Third International Conference on
Combinatorial Mathematics, (eds. G. Bloom, R. Graham, and J.
Malkevitch), Annals of the New York Academy of Sciences 555 (1989),
262-271 (with W. T. Trotter, Jr.).

"Hypergraphs with finitely many subtypes”, Trans. Amer. Math. Soc. 312
(1989), 699-718 (with P. Nyikos) . :

"A minimax theorem for chain complete ordered se'tfs", Order 5 (1988), 75-83.

"Representing an ordered set as the intersection of super greedy linear extensions”,
Order 4 (1987), 293-311 (with W. T. Trotter, Jr. and B. Zhou).

10



23.

24.

25.

26.

28.

29.

30.

38.

"Explicit matching in middle levels of the Boolean Lattice”, Order 5 (1988), 163-
171 (with W. T. Trotter, Jr. ).

"Applications of edge coloring of multigraphs to vertex coloring of graphs"”,
Discrete Math. 74 (1989), 117-124.

"The linearity of First-Fit for coloring interval graphs”, SIAM J. on Discrete
Math. 1 (1988), 526-530.

"A proof of Borsuk's theorem", in Functional Analysis Proceedings, The
University of Texas at Austin 1986-1987, (eds. E. Odell and H.
Rosenthal) Springer-Verlag, Berlin (1988), 195-202 (with R. Devore and G.
Lorentz).

"Racing pawn games", Congressus Num. 67 (1988), 257-264 (with P.
Nyikos).

"A note on removable pairs," Proc. of the Fifth International Conference
on the Theory and Applications of Graphs (1991), 739-742 (with
W.T. Troter).

"A polynomial time approximation algorithm for Dynamic Storage Allocation”,
Discrete Math. 88 (1991) 231-237.

"Computing the dimension of N-free ordered sets is NP-complete”, Order 6
(1989), 133-135 (with S.G. Penrice).

"The number of depth first searches of a poset"”, Order 6 (1989), 295-303 (with
W. T. Trotter).

"Fibres and ordered set coloring”, J. of Combinatorial Theory Series A 58
(1991), 158-164 (with D. Duffus and W. T. Trotter). '

V4

"Recent results on a conjecture of Gyarfas”, Congressus Num. 79 (1990), 182-
186 (with S.G. Penrice).

"The dimension of random ordered sets”, Random Structures and
Algorithms 2 (1991), 253-275 (with P. Erd6s and W.T. Trotter).

"Radius two trees specify x-bounded classes”, J. of Graph Theory 18 (1994)
119-129 (with S.G. Penrice).

"Colorful induced subgraphs", Discrete Math. 101 (1992) 165-169 (with W.T.
Trotter).

"On the game chromatic number of some classes of gxaphs';, Ars Combinatoria
35 (1993) 143-150 (with U. Faigle, W. Kern, and W.T. Trotter).

"Long stars specify weakly x-bounded classes”, Colloquia Mathematica
Societatis Jdanos Bolyai 60 Sets, Graphs, and Numbers (1991),
421-428.

11



39.

40.

41.

42.

43.

44.

46.

47.

48.

46.

50.

51.

52.

"On-line graph coloring”, On-Line Algorithms, C. McGeoch and D. Sleator
eds., (1992) 85-92 (with W.T. Trotter).

"An explicit 1-factorization in the middle of the Boolean Lattice", J. of
Combinatorial Theory Series A 65 (1994), 334-342 (with D. Duffus
and H. Snevily).

"First-Fit and on-line coloring of graphs which do not induce Ps", SIAM J. on
Discrete Math. 8, (1995) 485-498 (with S.G. Penrice and W.T. Trotter). -

"On-line graph coloring and recursive graph theory”, SIAM J. on Discrete

Math. 7, (1994) 72-89 (with S.G. Penrice and W.T. Trotter).

"Coloring interval graphs with first-fit", Discrete Math. 144 (1995) 47-57 (with
Jun Qin).

"Recursive and on-line graph coloring”, Recursive Mathematics, Elsevier, Y.
Ershov, S. Goncharov, A. Nerode, and J. Remmel eds., to appear.

"Coloring planar graphs with an uncooperative partner”, J. of Graph Theory
18 (1994) 569-584 (with W.T. Trotter).

"Applications of hypergraph coloring to coloring graphs which do not induce
certain trees", Discrete Mathematics 150, (1996) 187-193 (with V.
Raodl).

"Some results on dimensions of certain families of ordered sets", Order 9 (1992),
103-110 (with Jun Qin and W.T. Trotter).

"The square of paths and cycles", J. of Combinatorial Theory Series B 63
(1995) 55-64 (with Genghua Fan).

"The dimension of suborders of the Boolean Lattice”, Order 11 (1994) 127-134
(with Brightwell, Kostochka, and Trotter).

"Classes of graphs that are not vertex ramsey”, SIAM J. on Discrete Math., to
appear.

"Hamiltonian square-paths”, J. of Combinatorial Theory B, 67 (1996) 167-
182 (with Genghua Fan).

"The order dimension of 1-sets versus k-sets", J. of Combinatorial Theory A
73 (1996) 219-228.

"On-line Coloring of Perfect Graphs", Combinatorica 16 (1996) 479-491 (with
K. Kolossa).

"Game' chromatic number and treewidth", submitted (with Z. Tuza).

"Square hamiltonian cycles in graphs with maximal 4-cliques”, Discrete Math, to
appear (with J. Quintana).

12



57.

58.
59.
60.
61.
62.
63.

Other
64.

65.
66.

67.

68.

69.
70.

71.

"Partitioning a graph into two square-cycles”, J. of Graph Theory, 23 (1996)
241-256 (with Genghua Fan).

"Classes of graphs that exclude a tree and a clique and are not vertex Ramsey",
Combinatorica 16 (1996) 493-504 (with Yingxian Zhu).

"The dimension of finite subsets of k", Order, 13 (1996) 227-231 (with E.
Milner).

"Radius three trees in graphs with large chromatic number and small clique size",
submitted (with Yingxian Zhu).

"On-line coloring k-colorable graphs”, Israel J. of Math, to appear.

"Coloring graphs on-line", submitted.

"Interval orders and dimension", Discrete Math, to appear (with W.T. Trotter).
"Hamiltonian Chains in Hypergraphs", submitted (with Gyula Y. Katona).
References:

On-line Algorithms and Polynomial Time Approximation, Research proposal for
Grant N0001490-J-1206 (1989).

On-line Algorithms and Other Combinatorial Optimization Problems, Research
proposal for Grant N0001490-J-1206 (1992).

P. Erdés, Problem 9, Theory of Graphs and Applications (M. Fieldler ed.),
Czech. Acad. Sci. Publ., Prague (1964) 159.

Z. Fiiredi and J. Kahn, "On the dimension of partially ordered sets", Order 3
(1986) 15-20.

A. Gyidrfds, "On Ramsey Covering-Numbers", Coll. Math. Soc. Jédnos
Bolyai 10, Infinite and Finite Sets, North-Holland/American Elsevier, New
York (1975), 801-816.

A. Gyirfés, "Problems from the world surrounding perfect graphs”, Zastowania
Matematyki Applicationes Mathemacticae XIX, (1985), 413-441.

A. Gyarfés, E. Szemerédi, and Tuza, "Induced subtrees in graphs of large
chromatic number"”, Discrete Math. 30, (1980), 235-244.

N. Sauer, "Vertex partition problems", Corﬁbinatorics, Paul ‘Erdos Is Eighty
(Volume I), (1993) 361-377. '

13



